System Identification, Approximation and Complexity

نویسنده

  • Brian R. Gaines
چکیده

This paper is concerned with establishing broadly-based system-theoretic foundations and practical techniques for the problem of system identification that are rigorous, intuitively clear and conceptually powerful. A general formulation is first given in which two order relations are postulated on a class of models: a constant one of complexity; and a variable one of approximation induced by an observed behaviour. An admissible model is such that any less complex model is a worse approximation. The general problem of identification is that of finding the admissible subspace of models induced by a given behaviour. It is proved under very general assumptions that, if deterministic models are required then nearly all behaviours require models of nearly maximum complexity. A general theory of approximation between models and behaviour is then developed based on subjective probability concepts and semantic information theory The role of structural constraints such as causality, locality, finite memory, etc., are then discussed as rules of the game. These concepts and results are applied to the specific problem or stochastic automaton, or grammar, inference. Computational results are given to demonstrate that the theory is complete and fully operational. Finally the formulation of identification proposed in this paper is analysed in terms of Klir’s epistemological hierarchy and both are discussed in terms of the rich philosophical literature on the acquisition of knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Extension of Cube Attack with Probabilistic Equations and its Application on Cryptanalysis of KATAN Cipher

Cube Attack is a successful case of Algebraic Attack. Cube Attack consists of two phases, linear equation extraction and solving the extracted equation system. Due to the high complexity of equation extraction phase in finding linear equations, we can extract nonlinear ones that could be approximated to linear equations with high probability. The probabilistic equations could be considered as l...

متن کامل

AN ADAPTIVE WAVELET SOLUTION TO GENERALIZED STOKES PROBLEM

In this paper we will present an adaptive wavelet scheme to solvethe generalized Stokes problem. Using divergence free wavelets, theproblem is transformed into an equivalent matrix vector system, thatleads to a positive definite system of reduced size for thevelocity. This system is solved iteratively, where the applicationof the infinite stiffness matrix, that is sufficiently compressible,is r...

متن کامل

Subspace system identification

We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifyin...

متن کامل

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1977